—Chapter 5—

Special Relativity
and The Fields of
Moving Charges
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5-1 Einstein's Postulations in Special Relativity

A. PRIOR TO 1905
I. Inertia Frame of Reference

(1) Galileo's experiments on two incline planes combined together

Final

Initial position

Perpet ual
Motion

()

Galileo did the phenomenological description of the concept of inertia:
An object in a state of motion possesses an "inertia" that causes
it to remain in that state of motion unless an external force acts
on it.

(2) Newton did the quantitaive description of the concept of inertia and
formulated the first law of motion:
A body at rest remains at rest or, if in motion, remains in motion
at constant velocity unless acted on by a net external force.
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There exists frames of reference such that the velocity of a frame of a
moving body is constant or a given frame is at rest in the absence of
the external force, then these frames are called inertial frames of
reference.

S S’

= & —»

0 X 0’ X
That is, a frame of reference moving with constant velocity relative to
an inertial frame is also inertial. A frame of reference accelerating
relative to an inertial frame is not inertial.

EXAMPLES:
1. An observer sitting inside a bus does not experience an external
force.

Case I:
The ball and the tree are at rest relative to the observer.
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2.

Case II:
The ball is at rest relative to the observer. The tree is
moving uniformly toward the observer.

Conclusion:
Frames of reference at rest or moving uniformly relative to
the observer are called inertial frames of reference.

When the bus is accelerating with a,

t=0 ‘ ! 0
- -
L ¥
a
t=1s ; i v, =4 m/s
X ® -
=g 3’.1.‘
| 3
i T
t=2s 4 ! v, =8 m/s
@ S
=

The ball is accelerating toward the observer while there is no
external force acting on it, i.e., the frame of reference of the ball
is accelerating relative to the observer called the non-inertial
frame of reference.

(3) Consider two inertial frames. The frame S’ is moving forward with

constant velocity v relative to the frame S.

S S’
F 9

r

y
v r
A — z

//
> p >
X 0’ x'
x'=x—vt

l al |
I =1 =1
vt X

The relationships between two inertial frames can be described as:
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R R Galilean transformation
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(4) Consequences of Galilean transformation
1. Addition of velocity:

dx’ . d ( 0 = x o =
FTRT: xX—v = VDU =Uy — U
2. Invariant in form of Newton's equation:
PROOF:
, dp’ du’
F' = d_tT = mE;
Sinceu' =u—v
du’ d ( ) = du
dr’ de T T d
N du’ du_F
LT
EXAMPLES:
1. Longitudinal Doppler effect
Source Stationary
: , Observer
H A g
A +
EANANNNS
~u_ N
fo= At

Considering the source approaches observer

_u u _u N_ u N_ u
_/'l_(u—v)At/N_u—vAt_u—vAt’_u—vfo
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2. Transverse Doppler effect

Y )
e W train
»X
0
¥ train
W
Tp./_
»X
0
f N_N fi
A A0

= Doppler effect provides a direct evidence to exhibit the
validation of the Galilean transformation.

3. EM Radiation Source

B 1
» v

Observer

II. The Michelson-Morley Experiment

(1) Michelson interferometer and ether
Setup:
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Ly v
M, -—
Rotation
Ly
@ Be_am
splitter Co/mpensator M, ”

Sodium
light source Lo |

(diffuse) v\\\c7/f»
Observe the shift in the interference pattern
v along L,

L, L, 2L, 1

th=—— 4 —% ==
27 c—v c+vw c 1—v2/c?
. 2L, 2L 1
V= ¢ J1-v2)c?
2L, 1 2L, 1

Path difference §x = cét

2(Ly + L 1 1
St = At — At = (L + L) —— -
c 1-v?/c 1—v2/c?
Asv<c
2(Ly + Ly) v? v? v?
5tz——c—— 1+EE+ — 1+ﬁ+"’ =C—3(L1+L2)

Phase difference Ag
8x St 2mv?
Ap = 2m—-=2m—-= —/F(L1 +L,)
EXAMPLES:
. v=3x10%m/s, L; = L, = 1.2 m, 1 = 600 nm, Ad = 0.027
Width of fringe d = §x/1 = 0.01 is detectable

{
/
|
|

|
/
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(2) Experimental results:
The interference pattern was not changed after rotation.
Conclusion: The speed of light is the same in all inertial frames.

B. EINSTEIN'S POSTULATIONS

(1) The law of physics is the same in all inertial frames of reference.
COMMENTS:
1. Equations of motion are covariant, invariant in form, under a
transformation between two inertial frames, i.e.,

L, dp
F=—
dt
and
= _ dﬁ,
T odt

in another frame of reference.

2. Galilean transformation is failed to preserve the form of
Maxwell's equations between two inertial frames.
PROOQF:
Consider an infinity long wire carrying uniform charge A and a
test charge +q at r.

vi
S
as—rg1
r
— St — =X
~
In S frame:
— - /1
fE~d5i=E-2m"l:g=>E= Y = 7
€o 2megrl  2megr
BE=0
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ﬁy=qE+qﬁx§)—2n60r
In S’ frame

S, = A

B =E = e

=B’ -2nr' = pol = poA'v=>EB' =

5, o qA' foqA'v?
FI — El + BI ol 57 ey}
y = 5y T A8y 2meyT 2mr Y
Since
1
c2=—0o
Ho€o
we obtain
L oqt , qAv®  qX v
=0 — 2y’ = 1-
2megr 2megre 2megr
> FE, # F

The speed of light is equal to the value ¢ (in vacuum)
the motion of the light source.
COMMENTS:

2

!
_ poA'v 5
2mr!

independent of

1. The speed of light is constant in all inertial frames.

2. The addition of velocity under Galilean transformation is

contradictory to Michelson-Morley's experimental results.

(1) Relativity of simultaneity

OS:

Einstein for Everyone by John D. Norton

https://sites.pitt.edu/~jdnorton/teaching/HPS _

CONSEQUENCES OF EINSTEIN'S POSTULATIONS

0410/index.html

Imagine a long platform with an observer located at its midpoint. At
either end, at the places marked A and B, there are two momentary

flashes of light.
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The platform observer judges the A- and B-events to be simultaneous
and the A-clock and B-clock to be properly synchronized.

Then consider an observer who moves relative to the platform along its
length.
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The platform observer judges that the A-event occurs earlier and B-
event occurs later. The reasoning extends to the clocks. The A-clock is
set earlier than the B-clock, i.e., the clocks at A and B are NOT
properly synchronized.

Two events that are simultaneous in one inertial frame of reference will
not necessarily be simultaneous in any other inertial frame of reference.

Time dilation

Observer A" and the light source are at rest in the spaceship.

(a) ¥
Mirror

R

¥
X

Thus, relative to the light source, the observer A’ is in a rest frame

D= At’

Observer A is at rest on the ground.
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(0) yi (c)

Mirror

From A:

2 2
2
(At)? = —— (At)?
cc—7vV
cAt’ At'
At = =
Ve —v2 \J1-v2/c?
1
Let Y = /——— 1
ﬁ —v?/c?
= At = yAt'

where At" = At is called proper time, which is measured by A', i.e.,
during the measurement, A’ is at rest with respect to the event.
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5-2 Lorentz Transformation

A. LORENTZ TRANSFORMATION

(1) Lorentz transformation

S S’
A i'“
X/, — Zr
e
//
0 \ i (0} g x’r
| | :F' =y -vD)
I | »|
t X
x' =y(x —vt)
y' =y
z'=2z
t'=y(t+96)

The path of light in S frame
x2+y2+z2=c%t? = cit? —x? =y? + 2
The path of light in S’ frame
x?+y?+z?%=c*t"?=>c?-x?=y"%+2"7

Since

_'y2+Z2 =y12+Z12

we obtain

C2t2 — x2 = 242 — x'2

c2y?(t + 6)? — y?(x — vt)?

= c2y?(t2 + 6% 4 2¢6) — y?(x? + v2e? — 2xvt)

= (c%y? —v?y?)e? + c?y28% — y?x% + c2y?2t6 — y?2xvt
Since there is no x and t terms on the L.H.S., we should not have x
and t terms on the R.H.S. Thus, we set

v
c?y?2ts —y?2xvt =0= 6 = — X
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v 2
C2t2 _ xZ — (CZ)/Z _ v2y2)t2 + C2y2 <_2x) _ y2x2

2,,2
v
— (Czyz _ vzyz)tz + ( CZ _ yz)xz
Compare t? term (or compare x? term, we should obtain the same
result):

Cc

1
=yl —vylosy=—->1
V1 —v2%/c?
Therefore, we obtain the Lorentz transformation
x' =y(x —vt)

y' =y . 1

z' =z , where y = ———
v V1 —v2%/c?

t’=y(t—c—2x)

(2) The time interval measured in S’ frame where the event is at rest
relative to the observer.

OBSERVER IS AT REST
RELATIVE TO THE EVENT

YA y’/
v, AoesEe

l

el

At =t; — 1 R =t = i
b I

1 I
\{q LONGER TIME INTERVAL \&ROPER TIME INTERVAL.
MEASURED

At = t; — t; = At (proper time in S’ frame)
From inverse Lorentz transformation

t =y(t’ +£x’)
1 1 c2 1

! v !
tz =y tz +E§X2

4
«
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At =t, —t; = yAt' + )—gAx’
Since Ax" =0

At = yAt’
Since y > 1, the observer in S frame measures a longer time interval
than the observer in S’ frame.

(3) The length measured in S’ frame where the object is at rest relative to
the observer.

OBSERVER IS AT REST
RELATIVE TO THE OBJECT

\ /EOBSERVER
E °OBJECT

~

Y/ Y

X ’1‘1' ;‘ﬁ x’
L= x,—x, L' = x{—x!
' A) '.\
\{_}SHORTER LENGTH \E’PROPER LENGTH |
MEASURED

L' = x; — x1 (proper length in S’ frame)
From Lorentz transformation

x1 = y(x — vty)

xz =y(xz — vty)

L' =yL —yvAt
Since At =0
LI
L=—
Y

Since y > 1, the observer in S frame measures a shorter length than the
observer in S’ frame.

EXAMPLES:
1. The rocket moves away from us so it becomes shorter for us. In
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the reference frame of the astronaut we are the ones moving so
we are contracted.

Q At ;* v Alpha
Earth Centauri

2 : At, Alpha
» Centauri

v | v

2. Muon decay:
The speed of u particle in the cosmic ray is v = 0.998¢
The decay time (proper time) At' = At = 2 us
The travel distance (proper length) L' = vAr = 600 m
Usually, muon comes from at h = 9000 m above the sea level.
Why we can still detect it?

The decay time at earth is

At
At =—=30 us
1—1v2/c?
h =0.998¢c x 30 = 9000 m

B. RELATIVISTIC ADDITION OF VELOCITIES

(1) Relativistic addition of velocities
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A =dr/dt

e

]

Uy

Cdx' _dx'dt dx' jdt’

Tdt dtdt' dt/ dt
, _dy' dx'"dt dy' jdt’
YW=de T arde T de/ de
;L dz’ B dz' dt B dz' jdt’
Y2 =00 T drde . de/ de
Since
o (t v ):dt’_ vdx) (1 VU,
=Y sz dt_y c?dt =Y c?
Thus, we obtain
dx
. AV Uy~
x VU,\ 1 _ VUx
14 T2 c2
dy
=5 u
u;/ — dt — y
_ Dy _ Dy
V( c2 ) ( c2
dz
57 u
u; — dt — Z
_ Dy _ Dy
y( c? ) ( c?
EXAMPLES:
0.6¢c @ 0.8c
O — e (3
V—1 V2
1 Earth 2
1. The relative speed of 2 with respect to 1
S = earth, S'=1, S"=2
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u, = —0.8c
v = 0.6¢

, —0.8¢c — 0.6¢
Uy = = —0.95¢

- 1-— Clz (—0.8¢)(0.6¢)

2. The relative speed of 1 with respect to 2
S = earth, S'=2, S"=1

u, = 0.6¢
v=-0.8c
, 0.6¢ + 0.8¢
Uy = 1 = 0.95¢
1- i (0.6¢)(—0.8¢)
(2) Relativistic Doppler effect
1. Longitudinal
Source Stationary
H \’ Observer
- Wbl H
AVAVAVAVAN,
¢ N
fo= 1 At
Considering the source approaches observer
A

cAt—vAt_/1
=
¢ cN 1 N 1 flt
f_A_(c—v)At_l_ZAt_l_Z At
c c

Consider time dilation: At = yAt'

Ifv«e
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1/2 \—1/2
(13" 1-
c
=f0(1 too = )(1 bt )
2. Transverse
v A train
o
A
L X
(8]
Y train
4l
¥
»X
0]
N At’ v2
P Y
At At y c?

3. EM Radiation Source

B 1

Observer
B V1- v cos @
c

EXAMPLES:
1. A continuously emitted electromagnetic wave reflected back from
a mirror with speed v.

What is the reflected frequency?
ANSWER:
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2. If v L ¢, we assume f + fy = 2f,, what is the beat frequency?
ANSWER:
fle—v) = folc+v)

(f _fo)c = (f+f0)v ~ 2fov
2fov  2v
f—r =0 7

3. If beat frequency measurement is accurate to +5 H,, how

accurate is the v measured?
ANSWER:

A
Ay = ———+—— =0.075m/s
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5-3 Relativistic Momentum and Energy

A. RELATIVISTIC MOMENTUM

(1) Consider an elastic collision between two balls A and B. Before the
collision, ball A is at rest in S frame and ball B is at rest in S’ frame.

The balls are initially [ apart.

|
Y'iu
I
: ) B v
|
L
S X I
|
yl
|
| 0
s-—-———- X

Then, A is thrown up with velocity uy while B is thrown down with
velocity ug, where

Uy = Ug
When two balls collide, A rebounds with velocity u, while B rebounds
with velocity ug.

|
ylu

k

In S frame, the round-trip time At, for A is measured as,

At :
0=
and the velocity ug is found from
l
Ug = —
B Aty
where Aty is the time required for B to make its round-trip as
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©)

measured in S frame.
Since in S’ frame, B's round-trip requires the time At,, we have

At,
Atg = —————
1—u2/c?
Thus, we obtain
l l l
- - — 22
BT A, Aty 1-u?/e At,

In S frame, use the classical definition of momentum p = mu, then we

have

l
=MmyuuUy = my—
Pa AUa AAtO

pp = Mpug = Mmp4/1 —_UZ/CZ—
At,

where my, and mp are masses as measured in S frame.
If my = mp = m, momentum will not be conserved. Thus, if we let

then momentum will be conserved.

During the collision both A and B are moving in S and S’ frames. Since
the mass of the ball has clear definition and been measured at rest in
an inertial frame, we consider the limit cases uy, = 0 and ug = 0 and
obtain the rest mass of A in S frame and the rest mass of B in S’

frame, i.e.,
mA =m
Now, we consider the mass of B in S frame moving at the velocity u as
m
mg =mU) = ———=

EXAMPLES:
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1. Find the acceleration of a particle of mass m and velocity ¥ when

it is acted upon by the constant force F , where Fis parallel to .

ANSWER:
S dp
F= dt
. d mu
dt ﬁtuZ/Cz
3 1 u?/c? du
T Ao (- ut/c2|dt
du
mar

(1 — uZ/C2)3/2

B. RELATIVISTIC ENERGY

(1) The Newton's second law

dp d mu

dt dt 1 w2/l
Using work-energy theorem: The kinetic energy Ej, is the work done by
a net force in accelerating a particle from rest to velocity u,

E—fﬁ-d*—ji = \d —jd—mu
= |Frar= dt(\/_ 2/C>x— u <m)

Since
mu _ mdu 4 1 mu 2udu
<J1 — /c2> T iowje 2(1—u/c?p
u? -3/2
=m(1l- — du
c
we obtain

mc
Let F = ————
1—u?/c?

= E, = E —mc?

(2) The relativistic energy
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3)

The square of the relativistic energy

2 .4
2 m=c
E? = (Ex + mc?)’ = ———
(k ) 1—u?/c?
2 .4
m2c
= E? = E2 + 2E,mc? + m?c* = ———
k k 1—u?/c?
Here
2.4 2,2 .2
méc mu‘c
E2 + 2E,mc? = ————— —m?c* = ———— = p?c?
k k 1—u?/c? 1—u?/c? p

Thus, we obtain
E? = E? 4+ 2E,mc? + m%c* = p?c? + m?c*

E= ,/pzczizﬁz
For a particle at rest in S frame, i.e., u = 0, we have
E =mc?

Conservation of energy
Y1 s (before) Y} S(before)

—-u
m X m

YV s (after)

M
) -
4

e

In S frame, before collision:

mc? mc? 2mce

= + =
Ji—-u?/c?2 J1-u2/c? J1-u2/c?
after collision:
E, = Mc?
Since
m
M = ——
1—u?/c?
E, = E, = Conservation of energy in S frame.

2

Ep

In S’ frame, before collision:
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mc 2mc

2 T 1—u?/c?
(2
c?\1+u?/c?

=YE,

after collision:

Jimwee

E;, = E; = The energy is also conserved in S’ frame.

= The energy is conserved in both S and S’ frames.

EXAMPLES:

1.

A stationary body explodes into two fragments each of mass 1.0
kg that move apart at speeds of 0.6¢c relative to the original body.
Find the mass of the original body.

ANSWER:

The rest energy of the original body must equal the sum of the

total energies of the fragments.
2 2

m1C m2C 2

=mc
1.0c? 1.0c? 2c? 5
= + = =mc

J1-1(06)2 J1-(0.6)2 /1-(0.6)2
2
>m=————=25k
J1-(0.6)?
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H-4 Lorentz Invariance
A. INVARIANT SPACETIME INTERVAL

(1) The spacetime interval

(85)? = (cAt)? — (Ax)? — (Ay)” — (Az)?
OS:
In Euclidean space (3D):
(As)? = (Ax)? + (Ay)z + (Az)? is invariant under Galilean

transformation.

Since
(As")? = (cAt')? — (Ax")? — (By')* — (Az")?

v 2
= ety (ae - Zaw) - yPax - vaey - (ay)" - (827

2
y? <C2(At)2 — 2vAtAx + = (Ax)z)

—y2((Ax)? — 2vAxAt + v2(AL)?) — (By)” — (Az)?
2

=y2(At)?(c? — v?) — y2Ax? <1 - :—2> - (Ay)2 — (Az)?

c2(AD)? — (Ax)? — (Ay)” — (Az)?

= (As)?
= (As)? is invariant under the Lorentz transformation.

EXAMPLES:
1. Time dilation
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N A SI I‘l
’
L' tl
1 >
— x, >
I
A/ I
S +s )4
v
. ’
> 1 >
> x, >

(As)? = (cAt")?
(As)? = (cAt)? — (Ax)?
Since (As’)? = (As)?
(cAt)? — (Ax)? = (cAt")?
(cAt)? — (vAt)? = (cAt")?
2

2__°© "2
(At)* = ) (at’)

c? 1
At = At' = At' = yAt’
\/;2—172 [1—v2/c2 ¥

2. Length contraction

A SI SI
v f v
i |
I —
S S
ty |
e 1<k
X X
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"N 2
(AS’)Z — (CAtI)Z _ (AX’)Z — C2 (%) _ LrZ

2
(As)? = (cAt)? — (Ax)? = c? <§>
Since (As’)? = (As)?

12 LZ
2 2 _ .2
C v—z'—L =C 1—]5
2 /1,2
L7 c?/v 2 _ 1 5
c2/v2 -1 1—v2/c?
L' =yL
LI
L=—
Y
(2) Four-vectors:
x
X=["7
z
ct
The Lorentz transformation
v
0 0 —y-—
14 YC
o 10 o
A= 0 0 1 0
v
-y- 0 0 vy
X' =A-X
v v
y 00 7\ /x y(x—z(ct))
o 10 o0 |[¥y]|_ y
0 0 1 0 z z
v
—y— 0 0 ct y(ct—zx)
Since (As)? = c? x? —y? — 22, we introduce the Minkowski metric
matrix 1 as,
-1 0 0 0
_[0 -1 0 0
=10 o -1 0
0 0 0 1

Thus, we obtain
Xt.n X =c%t? —x% —y? — z2 = (As)?
From the invariance of the spacetime interval, (As')? = (As)?
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Thus, we obtain

AT.n.A:TI
COMMENT:
v v
v 00 sV 0 0 o[ Y 00 7rg
0 1 0 0 0O -1 0 O 0 1 0 0
0 0 1 0 0 0O -1 0 0 0 1
v v
S 00 g 0 0 0 1/\_,% oo
c c
v v
Y 0 0 —-y- -y 0 0 y;
_ 0 1 0 0 0 -1 0 0
0 0 1 0 0 0O -1 0
2 0 0 2 0 o
VC Y yC Y
v? v v
2(—14=) 0 0 y2o—y2=
Y ( CZ> 14 c Y c
_ 0 -1 0 0
N 0 0o -1 0
2
LU,V S v
——y = 0 0 ——+1
vio—vio Y s+
-1 0 0 0
(o -1 0 o
0 0 -1 0
0 0 0 1

B. INVARIANT REST ENERGY AND REST MASS

(1) Lorentz transformation of energy and momentum
Yboos ibog

z z
In S frame:
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mu mc
— ., E=

px:\/l_—_uT/CZ' J1—u?/c?

’ 2

oM g m?
Chioare L Tiare
Using
1 _ 1
12 2_ 2
Vi-ut/e o1 u-v
c2\1—uv/c?
3 1—uv/c?
- vZ  u?  ulp?
ﬁ‘ﬁ‘ﬁ+7r
B 1—uv/c?
\/1—172/02\/1—142/02
1—uv/c?
=y —
\/T—uz/c2
We obtain
, mu
x=____7__
\/1_—u’ /c?
1—uv/c? u—v
=m = ——
J1—uz/c2\1—uv/c?
B mu mv
<\/1—uz/c2 \/1—u2/02>
v
o re-26)
Py =Py
Pz =Dz

2

mc mc mc?(uv/c?)
E, e ——— - = E — e
2 y<\/1—u2/cz \/l—uz/c‘z) V(E = vpr)

(2) The rest energy

(mc?)’ = B2 = (p2)” = (pyc) — (pac)”
Since
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(m'e?)” =57 = (9he)” = (pje) = (pic)’
=y?*(E - vpx)z - ()’ (px - C%E) 6)2 - (Py6)2 - (PzC)2
= y? <E2 — 2Evp, + v2pZ — pZc? + 2p,VE — Z—zE2>
- (pyC)Z — (po)’
= |(1-5) B - @ | - () - )

c? — p? 2 5
=E2— 1___1]7/?2-}9% — (pyc) — (pZC)

= 72— (pe)’ ~ (pye) ~ (pac)’
= (me?)’

N2 . . . .
= (mc ) is invariant under a Lorentz transformation.

(3) 4-vectors:

Dx
Py
P= Pz
E/c
The Lorentz transformation
v
0 0 —y-
Y YC
[ o 10 o
A= 0 0 1 0
VC Y
P'=A-P
v vE
Px 00 =¥\ /s ALy
py |_| 0 10 0 Dy Dy
D 0 0 1 0 bz bz
E'/c . E/c E v

Since (mcz)2 =E%— (pxc)2 - (pyc)2 - (pzc)z, we obtain

PT-n-P=E%- (pxc)z - (pyc)z - (pzc)2 which is invariant.
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(4) The rest mass
Considering an atom composites two identical moving particles

Y4 s (before) Y} S'before)
u
u -u 2u/(1+u?/c?)
m m ¥ m (’” X
Y4 s (after) Y} 'after)
M

In S frame (center-of-mass):

myuy mu
P1 =
J1—u2/c? \/1 u?/c?
myu, mu

P A owe -/

The total momentum is p =p; +p, =0

E, = \/(mlcz)z + (plc)z

The total energy is

mc
E=E+E,=2——
J1—u?/c?
The rest mass is
VE? —p?c?* E 2m

In S’ frame (Lab frame):
p1=0
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3 ( mu u mc?
"Acwee dfi-wje
_ 2mu
T 1—u?/c?
The total momentum is
, , , 2mu
p=p1tp:= _1___117/02

Since
Ei =y(E; —up,)

3 mc? B m_
Y Ji—-u2/c?  J1—u?/c?

mc? u?
= ﬁﬁ(l B ?)
= mc?

E; = V(Ez - upz)

mc? N mu
=y u
J1—-u2/cz  J1-u2/c?
1+u?/c? 5
“\1-uZ/c? me
0OS:
From the relativistic energy
E{ = J(mcz)z + (p{c)z = mc?

E;, = \/(mcz)z + (péc)z

= \/m2C4 + 4y4m2u2C2

2 4 2
1-28 + 5 4%
=mC2 C C C
(1 —u?/c?)?
1+u?/c? .
=Ty me

The total energy is
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, , , . (1+u?/c? 5 2mc?
E:E1+E2 =mc +<ET/C2>THC :m
The rest mass is
_ JEZ—p2c?
c2
[y o)
1—u?/c? 1—u?/c?
= =
2me? J1—u?/c?
1—u2/c? c?
_ 2m
J1—uz/c?

EXAMPLES:
1. Considering an atom composites two identical moving particles

In S frame (center-of-mass):
YA

x|

4 x 0.6¢
p = ——— = 5C
e . _ (0607
— __CZ__
P2x = —3¢

Total momentum: p = p1, + pox =0

E = J(mcz)z + (pc)2 = /42 + 32¢% = 5¢2
E2 - 5C2

Total energy: E = E; + E, = 10c?

The rest mass of the atom is

7202
= JE? —pPe? J102 - 0% = 10

In S’ frame (Lab frame):
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y
System v=06c
m=10kg
s
!
P1x =0
, E, —3c—-0.6X%5
Pox =V | P2x _vﬁ = T = —7.5¢
Total momentum: p = —7.5¢
E] = 4c?
5¢% + 0.6¢ X 3¢ 5
= 8.5¢c

I — —_ =
EZ - Y(EZ vp2x) m
Total energy: E = 4c? 4+ 8.5¢% = 12.5¢?

The rest mass of the atom is m = v12.52 — 7.52 = 10

. An unstable particle having a mass of 3.34 X 10727 kg is initially
at rest. The particle decays into two fragments that fly off with
velocity of 0.987c¢ and —0.868c. Find the rest masses of the

fragments?
ANSWER:
Conservation of energy in CM frame
2 2
myc myc
MC2 — 1 2

) + p
J _w J _w
c? c?

Conservation of momentum in CM frame

0= myUy mpU;
up u3
2 T2
uf
w177z 0868c AL S,
™= \f—;gmz T 0.987c " 622 T D2
1-=3
c

3.34 x 10727 = 6.22m, + 2.01m,
= 6.22 X 0.284m, + 2.01m,
= 3.78m,

m, = 8.84 x 10728

my; = 2.51 x 10728
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5-5 Electric Field Measured in Different Inertial Frames

A. LORENTZ TRANSFORMATION OF
ELECTROMAGNETIC FIELDS

(1) General Lorentz transformation
SI

v

O
We decompose 7 into 7 and 7, which lie parallel and perpendicular to

¥. Thus, we obtain the Lorentz transformation of vectors:
17_’L = FJ_

>/ - 1'-7)

n=y|n-
1_7) 4

ct’ =y<ct—z-r>

(2) Consider the electromagnetic fields |c.f.7-2]
In S frame:

- -

- a -
E =-V ——A, B=VxA
LFT
In S’ frame:

a - - -
——A, B' =V x A
a—>t, — - - — -

We can decompose E' and B’ into Ej, E', Bj, and B} which lie parallel

E’/ — _vr(p/

and perpendicular to ¥. Thus, we obtaint the parallel and

perpendicular components of E' are

o I d 1
Ey=-Vi¢o' - 554
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o J -
EI — _VI I __ __AI
1 19 gt L
and the parallel and perpendicular components of B’ are
B =V x4
= (V) + V1) x (4 + 41
=V XA} + V) XA + V) x A, + V| XA
B|

Bj
=(V’><AT’) —V||><A’"+Vl><A’l—VL><A’

B, = (V’X/T’) =V, ><A’ + V) X 4]
Here, we would to introduce the Lorentz transformation of V, ¢, and A.

The Lorentz transformation of V:
d B i}
or| C o7,
0 67"" 0 or, ad Bt 0 <6 v 8)
== =Y\ sz t+—-—=
ar" 6r" 6r|| oty o7, ar" ot Jdry ccot
0 ot 0 o7 0 _ (6 v 6)
c

>

6t+c ar

cav " cav ot ot or
Expressed by the symbol V (nabla)

V,=V,

, v o

Vi=y (Vu + ZE&)

9 o b 9 a

57—V(cat+z'v>:a7=y a*”)

The Lorentz transformation of ¢ and A:

A =4,

Ay —ox . Y Y

Ay oy ) 4 =V<A||—;(<P/C)>=V<A||—C—2<P>

A -z R

o/c ot <P'/C=V<(<P/C) ; >=>cp’=y(¢>—17~ff)
\

(3) The Lorentz transformation of §|'|

By =V, x 4,
Since

V=V,

A =4,
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thus we obtain
Bj =B,
(4) The Lorentz transformation of Ej_

Bl =V x AL +V\ x 4
Since

! v a
Vi=vy (Vu + ;;&)

=, - 1})
A =r{Ai—-ze

thus we obtain

=, 1-7)6 - - 1.-7)
B, =vy V||+2552 XA, +V, Xy A"—EECP

= Y
—yBJ_+EE

- Yy . a/ﬁ )
=yB, — =i x| ——=—V

Yb, CZU ( ot 1P

- ‘y_) -
=]/BJ__EEUXEJ_

v

(5) The Lorentz transformation of Ezﬁ

Ej = -V,
e’ = at,|
=-y V|+—552 y((p—v~A)—y a+v'V 14 A”—C—ch
_) a - l_; a -
=—V2<V||<P+ T Vn( A)__za_( 'A)

9. . . Ba
—Vz(aAu"'(V'V)An 259 (-V) 2<P>

Since ¥ is a constant vector
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Vi (5-4)=v,(3-4))

-2
inner

produ(_:)t .
(T-V) 4 = (7 V)4

inner
product

thus, we obtain

Ej=-y? (Vu(P"‘ ;aat‘P Vi (17 I‘T)—zzai( 'I‘Tn)>

-

0 - . . v %
—Vz(aAu"'(v‘Vu)Au 25,9 (v ||)C—2<P>

5 p2 . v¥ad .
==y Vu(P—zEVu(P atAn 2 aAn

+y? (Vu (’7 ' I‘Tu) - (v Vu)Au)

5 v? 5 v\ ad .
= \1-ZzZ|Nie-v (1-ZZ )54
+y? (Vu (77 : ﬁ”) — (v Vu)ju)
J . N e
==Vo - A+ (Vn (v : Au) - (v Vu)An)
Using vector triple product identity BAC-CAB:
v (Vu X /T”) =V (17 : Z”) ~(#- V)4 =0

=0
Thus, we obtain

a -
— Ay = E,

Ej=-Vyp— pm

(6) The Lorentz transformation of Ei

aA
at'

L o d S
= —VJ_]/((p -V ‘A”) —]/<at + 17 V”>A
a - N o . 5
=y <_VL(P - EAL> +y (VJ_ (’7 'AII) - (V : VII)A_L)
Using vector triple product identity BAC-CAB:
1_5>< (VJ_ XA)") = VJ_('E'A)") - (ﬁ'VJ_)/T" = VJ_(I_;‘/T")
=0

El =-Vig -

05539 H



U X (Vu X I‘TL) =V (17 ' A)J.) ~(3- V)AL= ~(7- V)AL
=0
Thus, we obtain

E; =y<—vlcp—%fh>+y(ﬁx(leﬁ")ﬂ?x(vuxﬁl))
=V<—Vlcp—%fﬁ>+y(
=y§l+y(f7’><§l)
:]/(§+13><1§)L

U
X
Ve
<
X
>
N—
'_
N———

(7) Thus, we found the Lorentz transformation of electromagnetic fields
Ezli:ﬁ", E)J,_:]/(E_:‘F'EXE)J—
Bi=B, Bi=y(6-LxE
1= B 1=y|B-5XE
L
Suppose S frame exists in which B = 0 in some region. Then in any
other S’ frame that moves with velocity ¥ relative to S frame, we have
Ey=E, El=vE

. -, l—; I TS (a)
B"=0, BJ_=—)/§XEJ_

B. GAUSS'S LAW FOR MOVING CHARGES

(1) A moving point charge q
I's/s’

t:tl

_}/ E,
E,

Y

®
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*) -
-

We consider the fields seen by an observer in the S frame when a point
charge g moves with a velocity v. The charge is at rest in S’ frame, i.e.,

the field of the point charge in its own frame is entirely electrostatic:
!

E, = __1 cos@ = 1 ad
Y 4meyr'? 47e, (x'2 + y’2)3/2
El — q y

= sinf =
Y Ameyr'? 47e, (x72 +y’2)3/2

Since B' = 0 in S’ frame, we have, according to equation (a),
Ey=E, E =YE|
Thus, we obtain
!

Ey=E,=— z
xR 41e, (xIZ + y12)3/2
, q Yy'
E, =YE,

= 4me, (xIZ + y,2)3/2
Using Lorentz transformation and let t = 0:
x'=y(x—vt) =yx

y' =y
z' =z
, v v
t' = y(t —ﬁx) = —]/EEX
The fields become
g -4 X’ _ 4 yx
x 4‘7'[60 (xlz + y,2)3/2 47'[60 (yzxz + y2)3/2
q Yy’ q Yy
y

" 4me, (x,z + y,z)s/z " 4me, (yzxz n y2)3/2
We obtain the electric field in the laboratory frame:
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2)

g 4 yx PO Yy 9
- 3/2 3/2
4me (y2x2 + yz) 4me (y2x2 + yz)
q 1 (x% +y9
xX + yy)
4'7'[60 yz(xz + yz/y2)3/2
_q 1—v?/c? P
" 4mey (R? cos? 0 + (1 — v2/c?)R? sin? 0)3/2
. q 1—v?%/c? R b
" 4mey (1 — v2/c? sin2 )3/2 R2 (b)
Ed
s/
E
P A
E. f‘:_.,.
y y
: G

The electric field is radial, but the lines of force are isotropically
distributed only for v = 0. Along the direction of motion (8 = 0), the
field strength is down by a factor 1/y? relative to isotropy, while in
the transverse directions (0 = m/2) it is larger by a factor of y.
OS:
Further reading: accelerating charge
https://physics.stackexchange.com/questions /296904 /electric-

field-associated-with-moving-charge

Gauss's law for a moving point charge
dd = F . dd = — 1-vi/e? R Rz 0 dodpR
= da — - R?sin
47‘[60 (1 —v2/c?sin20)3/2 R?
jﬂdcp f 1-v?/c” oa [ do
sin
o 4mey (1 —v2/c?sin?9)3/2 0
=27

Using the integral formula:
f sinf do B —cos 6
(1—a?sin20)3/2 (1 —a?)(1 — a?sin? 9)1/2
We obtain
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https://physics.stackexchange.com/questions/296904/electric-field-associated-with-moving-charge

_q(1—v?/c?) —cosf 4

B 4me, (1—v2/c?)(1 - v?/c?sin? 6)1/2|
q(1—v?/c?) 2

- 2¢, (1—-v2/c?)

Ny

- 2T

€o

(3) A line of moving charges (moving rod)

-

Liib'lrl*[‘;'l'-l-i*tittttt+]itt‘vv
dx

X

An infinity long rod carrying uniform charge A moving with velocity v.

From equation (b), we have

¢ = > )
i = -4 1-v?/c? R
" 4mey (1 — v2/c?sin? 0)%/2 R?
_ dq 1-v?/c? R
4M€0 (1 — v2/c2 cos? ¢)3/2 R?
F fn/zdﬁ ¢ fm do __ 1-vie ¢
= cos¢p = — cos
—m/2 —ny24meq (1 —v2/c? sin? 0)3/2 R?
Since
dq = Adx db - do arde
Rd¢ = dxcos¢ ;= dqg = AR = -
r =Rcos¢ cos¢  cos¢pcosgp cos*¢

Thus, we obtain
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. m/z 1 1—v?%/c? 7 Ard
E=f / os¢ ¢

c
P (1 — v2/c? cos? ¢)3/2 r2/cos? ¢ cosZ ¢
f"/z A 1—v?/c? 7 b do
= —cos
—n2 A€ (1 - v2/c? cos? ¢)3/2 r
w2 ) 1—v?/c? fc (v
:f ) 3/2——d(—sm¢>>
/2 ¥TE (1 —v2/c? +v2/c?sin? ¢) rv c

Using the integral formula:

t
(a + t2)3/2 a?(a? + t2)1/2
We obtain
27,.2\V o m/2
3 A Fc (1-v2/c )—smqb
4METV (1 — y2/c2)(1 - v2/c? + v2/c? sin? ¢))1/2 a2
AT (1—v2%/c?)2
" 4megr (1 —v2/c?)(1 — v2/c? + v2/c?)1/2
— A’ Lo}
B 27‘[€OTT

(4) Gauss's law for a line of moving charges
The field of the infinity long rod in its own frame is entirely
electrostatic, i.e.,

5 A
jEE’ da' =E'- 2nr’l’=g=>E’= Q = p!
s

€o 2megr'l’  2meqr’
Since B' = 0 in S’ frame, we have, according to equation (a),
r=r'
Ey=E, E =VE|
Thus, we obtain
T 7 A N B
E =yE' = 7= 7
2meqr 2meqr
Since S’ frame moves with velocity v with respect to S frame, the

distance between charges in the rod as seen in S frame is contracted by
ll

l=—
14
The linear density of positive charge in this frame is correspondingly
Q_Q Q
/1 = — = =y—= A’ = l’ =
l ll/y y ll y

Thus, we obtain
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- y N A
E = =
ZnEOrT 2neorr

A

C. LORENTZ FORCE BETWEEN MOVING TEST CHARGE
AND OTHER CHARGES

(1) The Lorentz transformation of the force

S'system v:S' with respectto S

X

s _ 4B _ dpy dt
W= de T dt dt’
F_’-l _ dﬁl _ dﬁi dt
L7 der T dt dt

Since

" . v, dt’ " v-u
= _— = = -
14 c? " dt 4 c?

Thus, we obtain

dﬁ" ’l_7) dE d"
ey var p
dpy _ dp sdt’ _ y< dt  c? dt) :

dc dt/dt < {;’.ﬁ)
y{1l-

o2
d—)
g, dp’ sdt’ ftl
dt’  dt/dt 3.1
y{1- c2
From the work-energy theorem,
E—fﬁ ai = [9P. gz = [ 9P dfdt—fd% i dt
B "Tlac T ) ae e T ae
we have
T oF.pg=t.g =22 20
a -t T (dt T )

Thus, we obtain
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apy _ 7 (dpy  dp.) 4
dt dt

dp; dt ¢?
dt’ 5.1 T dt 57\
(%

If the velocity at S frame vanishes at a given moment (namely, S frame
is the rest frame), then 4 = 0 and we have

"
Y iu
|
|
|
|
Srl. _____
XF
|
yl
|
|
|
S-———--- X
L, dpi -
1 |
2 _ dﬁl ﬂ
1 dt’ y

yi

qs

A test charge q at rest a distance r from an infinity long rod carrying
uniform charge 1. The field of the infinity long rod in its own frame is
entirely electrostatic, i.e.,

> Q_ = Q A
E-da=E -2nrl=—=E= =
s €o 2megrl  2megr
The Lorentz force on the test charge is
o - qr
F=qE = 7
2megr

Now consider an observer moving to the right with velocity v. In
observer frame, both the test charge and the rod move to the right.

Since B = 0 in S frame, we have, according to equation (a),
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r'=r
Ey=E,, El=YE,

ol ol
B"—O, BJ_—_‘}/;XE_L
Thus, we obtain
=, 5 1 Z3 .
E'=yE = - -+~ since parallel components canceled out
2meyr
- v yA o yAv
B'=—-y—SXE=—c — VX = ———=—2
Ve 2megc?r! 2megc?r’

and the Lorentz force is
F' =q§’+qﬁx§’
Yar ., yqiv®

T 2meyr’ 2meyc?r'
’yq/‘{ ( 172) "
=5 1-— ) r
2megr c
9t .
© 2megyr’
_F
14

(3) The Lorentz force between a moving charge and other moving charges.

s
S v
__/"—__ ‘T'
\ 'l'1.fi:'(_\.
\ AR
‘.‘ ¢ :_1;.\\11- s
. \ ~
] L
T_/- {
AP § |I
\ e |
\ —
D
l___./ q @ 7
A
Electrons y \
[ ] [ ] L ] L ] [ ] [ ] [ ] L ] [ ] [ ] [ ] . L] [ ]
. . ] . ° OO . ° © oS5 . .
Tons —
A I

In the test charge frame, the positive ions are moving with velocity —v.
The distance between ions as seen in the test charge frame is

contracted by
l

I'=-

The linear density of positive ions is correspondingly
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y_0_ 0 _ 0
Ur 1y l

Electrons are already moving with velocity I = Av, in the lab frame.

Using addition of velocities, the velocity of electrons in the test charge

=]/A

frame is
' UO - vV
v = g
-
The Lorentz factor of electrons in the test charge frame is
1 1

I
Yo =~ —, Yo = —
2 2
/ _Yo_ / _Y
c? c?

Thus, the linear density of electrons is correspondingly

— 1 h-22)
N A
c? c* c? c? c?
- (1%
v: v?  viv? c?
-2zt a
_ 1 1 ( v0v>
vg 1 V2 c?
2 T2
=Yo =Y
we obtain
LA (1 v0v> 1 /1(1 vov)
yO Yo = —YoV CZ Yo =Y C2
The total linear density of charge in the test charge frame is

PR ;1(1 U"”)— 2207
_y YOYO_V y C2 - CZ

The field of the wire in the test charge frame is
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VoV

_,,:__/1’ Ar=_le_2_Ar= _ylvov_”
2meqr’ 2meqr! 2megc?r!
The test charge will therefore experience a Lorentz force
o - qyAvgv
F'=qE' = —————¢
1 2meqc3r!

The force on the moving test charge, measured in the lab frame, is
=1

ﬁziz_ qmv A _ qvl »
y 2megc?r’ 21€nC?T
Since
1
c?=—
Ho€o

thus, we obtain the force

2nr 2nr
Let £ X 2 = —9 and ¥ = vX. The force, in the lab frame, becomes
e=q17><g%f=qﬁ><)§)
where
= ol
T 2nr

Conclusion: if a charge is stationary, it only produces an electric field,
but when viewing the charge from a frame that is moving relative to
the charge, a magnetic field is also produced.
NOTE:
An electric field for someone in the stationary frame, might
appear as a magnetic field for someone else in the moving frame,
because eletric and magnetic fields are not invariant under the
Lorentz transformation. That is, two observers may disagree on
whether a field "looks" electric or magnetic.
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